SAFETY DATA SHEET

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY UNDERTAKING

1.1 Identification of the Mixture:
Trade/Product Name: E-Wrap Endothermic Wrap

1.2 Relevant Identified Uses of the substance and uses advised against:
Intended Use: Insulation Fire Barrier

1.3 Details of the Supplier of the Safety Data Sheet:
Supplier Name: Specified Technologies Inc.
Address: 210 Evans Way
Somerville, New Jersey 08876, USA
Business Phone: 1-800-992-1180
Email: techserv@stifirestop.com

1.4 Emergency Telephone Number of Supplier
Emergency Phone:
U.S., Canada: 1-800-255-3924 (24 hrs)
International: +1-813-248-0585 (collect-24 hrs)
Hours of Operation: 24 Hours
Language: English

2. HAZARD IDENTIFICATION

2.1 Classification of substance or mixture

Signal Word
Warning

Hazard Statements
Suspected of causing cancer by inhalation.

Precautionary statements
Do not handle until all safety instructions have been read and understood.
Use respiratory protection as required; see section 8 of the Safety Data Sheet.
If concerned about exposure, get medical advice.
Store in a manner to minimize airborne dust.
Dispose of waste in accordance with local, state and federal regulations.

Supplementary Information
May cause temporary mechanical irritation to exposed eyes, skin or respiratory tract.
Minimize exposure to airborne dust.

Describe any hazards not otherwise classified that have been identified during the classification process
Mild mechanical irritation to skin, eyes and upper respiratory system may result from exposure.
These effects are usually temporary.

Mixture rule
Not applicable.
3. COMPOSITION and INFORMATION ON INGREDIENTS

3.1 Composition

<table>
<thead>
<tr>
<th>Chemical and Common Name</th>
<th>CAS Number</th>
<th>% BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classified ingredient:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractories, Fibers, Aluminosilicate*</td>
<td>142844-00-6</td>
<td>30</td>
</tr>
</tbody>
</table>

*Synonyms: RCF, ceramic fiber, Alumino Silicate Wool (ASW), synthetic vitreous fiber (SVF), man-made vitreous fiber (MMVF), man-made mineral fiber (MMMF), high temperature insulation wool (HTIW)

Impurities and stabilizing additives
Not applicable.

4. FIRST-AID MEASURES

4.1 Description of first aid measures

Description of necessary measures, subdivided according to the different routes of exposure, i.e., inhalation, skin and eye contact, and ingestion

SKIN
Handling of this material may generate mild mechanical temporary skin irritation. If this occurs, rinse affected areas with water and wash gently. Do not rub or scratch exposed skin.

EYES
In case of eye contact flush abundantly with water; have eye bath available. Do not rub eyes.

NOSE AND THROAT
If these become irritated move to a dust free area, drink water and blow nose.
If symptoms persist, seek medical advice.
Skin and respiratory effects are the result of temporary, mild mechanical irritation; fiber exposure does not result in allergic manifestations.

4.2 Most important symptoms and effects, both acute and delayed

Mild mechanical irritation to skin, eyes and upper respiratory system may result from exposure. These effects are usually temporary.

4.3 Indication of any immediate medical attention and special treatment needed

Skin and respiratory effects are the result of temporary, mild mechanical irritation; fiber exposure does not result in allergic manifestations.

NOTES TO PHYSICIANS
Skin and respiratory effects are the result of temporary, mild mechanical irritation; fiber exposure does not result in allergic manifestations.

5. FIRE-FIGHTING MEASURES

5.1 Fire extinguishing media

5.1.1 Suitable extinguishing media
Use extinguishing agent suitable for surrounding combustible materials.

5.1.2 Unsuitable extinguishing media
Not available

5.2 Special hazards arising from the substance or mixture

Non-combustible products, class of reaction to fire is zero. Packaging and surrounding materials may be combustible.

5.3 Advice for Firefighters

In large fires in poorly ventilated areas involving packaging materials respiratory protection / breathing apparatus may be required.
6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment, and emergency procedures

6.1.1 For non-emergency personnel

Under normal handling conditions an accidental release is highly unlikely. Minimize airborne dust. Compressed air or dry sweeping should not be used for cleaning.

6.1.2 For emergency personnel

Use personal protection recommended in Section 8 of the SDS

6.2 Environmental Precautions

The product should not be released into nature but collected and delivered according to agreement with local authorities and practices.

6.3 Methods and material for containment and clean up

Frequently clean the work area with appropriately filtered vacuum or wet sweeping to minimize the accumulation of debris. Do not use compressed air for clean-up. EMPTY CONTAINERS: Product packaging may contain residue. Do not reuse.

7. HANDLING and USE

7.1 Precautions for Safe Handling

Handle product carefully to minimize airborne dust. Limit use of power tools unless in conjunction with local exhaust ventilation. Use hand tools whenever possible.

7.2 Conditions for Safe Storage, including any incompatibilities

Store in a manner to minimize airborne dust.

7.3 Specific End Use(s)

This product is for use as an insulation. Follow industry standards for use of this product.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

8.1 Occupational Exposure Limits

OSHA permissible exposure limit (PEL), American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV), and any other exposure limit used or recommended by the chemical manufacturer, importer, or employer preparing the safety data sheet, where available

<table>
<thead>
<tr>
<th>Components</th>
<th>OSHA PEL</th>
<th>NIOSH REL</th>
<th>ACGIH TLV</th>
<th>MANUFACTURER REG</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCF</td>
<td>None</td>
<td>0.5 f/cc</td>
<td>0.2 f/cc</td>
<td>TLV, 8-hr. TWA 0.5 f/cc, 8-hr. TWA*</td>
</tr>
</tbody>
</table>

*Except for the state of California, where the PEL for RCF is 0.2 f/cc 8-hr TWA, there is no specific regulatory standard for RCF in the U.S. OSHA's "Particulate Not Otherwise Regulated (PNOR)" standard [29 CFR 1910.1000, Subpart Z, Air Contaminants] applies generally - Total Dust Total Dust 15 mg/m³; Respirable Fraction 5 mg/m³.

**In the absence of an OSHA PEL, HTIW Coalition has adopted a recommended exposure guideline (REG), as measured under NIOSH Method 7400 B. For further information on the history and development of the REG see "Rationale for the Recommended Exposure Guideline" at page 34 of the HTIW Coalition Product Stewardship Program http://www.htiwcoalition.org/documents/PSP_2012.pdf .

OTHER OCCUPATIONAL EXPOSURE LEVELS (OEL)

RCF-related occupational exposure limits vary internationally. Regulatory OEL examples include: California, 0.2 f/cc; Canadian provincial OELs ranging from 0.2 to 1.0 f/cc. The objectives and criteria underlying each of these OEL decisions also vary. The evaluation of occupational exposure limits and determining their relative applicability to the workplace is best performed, on a case-by-case basis, by a qualified Industrial Hygienist.
8. EXPOSURE CONTROLS and PERSONAL PROTECTION (continued)

8.2.1 Appropriate Engineering Controls

Use engineering controls such as local exhaust ventilation, point of generation dust collection, down draft work stations, emission controlling tool designs, and materials handling equipment designed to minimize airborne fiber emissions.

8.2.2 Personal protection equipment

Skin Protection
Wear personal protective equipment (e.g. gloves), as necessary to prevent skin irritation. Washable or disposable clothing may be used. If possible, do not take unwashed clothing home. If soiled work clothing must be taken home, employees should be informed on best practices to minimize non-work dust exposure (e.g., vacuum clothes before leaving the work area, wash work clothing separately, and rinse washer before washing other household clothes).

Eye Protection
As necessary, wear goggles or safety glasses with side shields.

Respiratory Protection
When engineering and/or administrative controls are insufficient to maintain workplace concentrations below the 0.5 f/cc REG or a regulatory OEL, the use of appropriate respiratory protection, pursuant to the requirements of OSHA Standards 29 CFR 1910.134 and 29 CFR 1926.103 is recommended. A NIOSH certified respirator with a filter efficiency of at least 95% should be used. The 95% filter efficiency recommendation is based on NIOSH respirator selection logic sequence for exposure to manmade mineral fibers. Pursuant to NIOSH recommendations, N-95 respirators are appropriate for exposures up to 10 times the NIOSH Recommended Exposure Limit (REL). With respect to RCF, both the NIOSH REL and the industry REG have been set at 0.5 fibers per cubic centimeter of air (f/cm³). Accordingly, N-95 would provide the necessary protection for exposures up to 5 f/cm³. Further, the Respirator Selection Guide published by 3M Corporation, the primary respirator manufacturer specifically recommends use of N-95 respirators for RCF exposures. In cases where exposures are known to be above 5.0 f/cm³, 8-hour TWA, a filter efficiency of 100% should be used. Other factors to consider are the NIOSH filter series N, R or P -- (N) Not resistant to oil, (R) Resistant to oil and (P) oil.

Proof: These recommendations are not designed to limit informed choices, provided that respiratory protection decisions comply with 29 CFR 1910.134.
The evaluation of workplace hazards and the identification of appropriate respiratory protection is best performed, on a case by case basis, by a qualified Industrial Hygienist.

Other Information
- Concentrations based upon an eight-hour time weighted average (TWA) as determined by air samples collected and analyzed pursuant to NIOSH method 7400 (B) for airborne fibers.
- The manufacturer recommends the use of a full-facepiece air purifying respirator equipped with an appropriate particulate filter cartridge during furnace tear-out events and the removal of used RCF to control exposures to airborne fiber and the potential presence of crystalline silica.
9. PHYSICAL and CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

- **Appearance:** White, fibrous mat
- **Odor:** Odorless
- **Odor Threshold:** Not applicable
- **pH:** Not applicable
- **Melting point:** 1760 °C (3200°F)
- **Initial boiling point:** Not applicable
- **Flash point:** Not applicable
- **Auto ignition temperature:** Not applicable
- **Flammability (solid / gas):** Not applicable
- **Flammability limit – lower (%):** Not applicable
- **Flammability limit – upper (%):** Not applicable
- **Vapor pressure:** Not applicable
- **Vapor density:** Not applicable
- **Evaporation rate:** Not applicable
- **Relative density:** 2.50 – 2.75
- **Partition coefficient (n-octanol / water):** Not applicable
- **Solubility:** Insoluble
- **Decomposition temperature (°F):** Not applicable
- **Viscosity:** Not applicable

10. STABILITY and REACTIVITY

10.1 Reactivity

- RCF is non-reactive.

10.2 Chemical stability

- As supplied RCF is stable and inert.

10.3 Possibility of hazardous reactions

- None

10.4 Conditions to avoid

- Please refer to handling and storage advice in Section 7

10.5 Incompatible materials

- None expected

10.6 Hazardous decomposition products

- Thermal decomposition of binder from fires or from first heat of product may release carbon monoxide and carbon dioxide. Use adequate ventilation or other precautions to eliminate exposure to vapors resulting from thermal decomposition of binder. Exposure to thermal decomposition fumes may cause respiratory tract irritation, bronchial hyper-reactivity or an asthmatic-type response.
11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

For more details on scientific publications referenced in this SDS see http://www.htiwcoalition.org/publications.html

TOXICOKINETICS, METABOLISM AND DISTRIBUTION

Basic Toxicokinetics
Exposure is predominantly by inhalation or ingestion. Man-made vitreous fibers of a similar size to RCF have not been shown to migrate from the lung and/or gut and do not become located in other organs of the body.

Human Toxicological Data/Epidemiology Data
In order to determine possible human health effects following RCF exposure, the University of Cincinnati has been conducting medical surveillance studies on RCF workers in the U.S.A; this epidemiological study has been ongoing for 25 years and medical surveillance of RCF workers continues. The Institute of Occupational Medicine (IOM) has conducted medical surveillance studies on RCF workers in European manufacturing facilities. Pulmonary morbidity studies among production workers in the U.S.A. and Europe have demonstrated an absence of interstitial fibrosis. In the European study a reduction of lung capacity among smokers has been identified, however, based on the latest results from a longitudinal study of workers in the U.S.A. with over 17-year follow-up, there has been no accelerated rate of loss of lung function (McKay et al. 2011). A statistically significant correlation between pleural plaques and cumulative RCF exposure was evidenced in the U.S.A. longitudinal study. The final report of the USA mortality study (LeMasters et al., 2017) concluded that “after 30 years of follow-up, no excess of lung cancers in the mortality study and no significant association with radiographic findings of interstitial fibrosis were found in this group of workers.” The study also found a small incidence of other effects that appear unrelated to RCF exposure. The final mortality report did not change the current hazard classification for RCF.

Information on Toxicological Effects
- **Acute toxicity: short term inhalation**
 No data available: Short term tests have been undertaken to determine fiber (bio) solubility rather than toxicity; repeat dose inhalation tests have been undertaken to determine chronic toxicity and carcinogenicity.
- **Acute toxicity: oral**
 No data available: Repeated dose studies have been carried out using gavage. No effect was found.
- **Skin corrosion/irritation**
 Not a chemical irritant according to test method OECD no. 404.
- **Serious eye damage/irritation**
 Not possible to obtain acute toxicity information due to the morphology and chemical inertness of the substance.
- **Respiratory or skin sensitization**
 No evidence from human epidemiological studies of any respiratory or skin sensitization potential.
- **Germ cell mutagenicity/genotoxicity**
 Method: In vitro micronucleus test
 Species: Hamster (CHO)
 Dose: 1-35 mg/ml
 Routes of administration: In suspension
 Results: Negative
- **Carcinogenicity**
 Method: Inhalation, multi-dose
 Species: Rat
 Dose: 3 mg/m3, 9 mg/m3 and 16 mg/m3.
 Routes of administration: Nose only inhalation
 Results: Fibrosis just reached significant levels at 16 and 9 mg/m3 but not at 3 mg/m3. None of the parenchymal tumor incidences were higher than the historical control values for this strain of animal.
 Method: Inhalation, single dose
 Species: Rat
 Dose: 30 mg/m3
 Routes of administration: Nose only inhalation
 Results: Rats were exposed to a single concentration of 200 WHO fibers/ml specially prepared RCF for 24 months. High incidence of exposure-related pulmonary neoplasms (bronchoalveolar adenomas and carcinomas) was observed. A small number of mesotheliomas were observed in each of the fiber exposure groups (Mast et al 1995a).
 Method: Inhalation, single dose
 Species: Hamster
 Dose: 30 mg/m3
 Routes of administration: Nose only inhalation
11. TOXICOLOGICAL INFORMATION (continued)

Results: Hamsters were exposed to a single concentration of 260 WHO fibers/ml specially prepared RCF for 18 months and developed lung fibrosis, a significant number of pleural mesotheliomas (42/102) but no primary lung tumors (McConnell et al 1995).

Method: Inhalation, single dose

Species: Rat

Dose: RCF1: 130 F/ml and 50 mg/m3 (25% of non fibrous particles)
RCF1a: 125 F/ml and 26 mg/m3 (2% of non fibrous particles)

Routes of administration: Nose only inhalation

Results: Rats were exposed to RCF1 and RCF1a for 3 weeks. The objective of the study was to compare lung retention and biological effects of the original RCF1 compared to RCF1a. The main difference of these 2 samples was the non-fibrous particle content of respectively 25% versus 2%. The post treatment observation was 12 months. Alveolar clearance was barely retarded after RCF1A exposure. After RCF1 exposure, however, a severe retardation of clearance was observed. (Bellmann et al 2001).

After intraperitoneal injection of ceramic fibers into rats in three experiments (Smith et al 1987, Pott et al 1987, Davis et al 1984), mesotheliomas were found in the abdominal cavity in two studies, while the third report (Pott et al 1987) had incomplete histopathology. Only a few mesotheliomas were found in the abdominal cavity of hamsters after intraperitoneal injection in one experiment (Smith et al 1987). However, the ceramic fibers tested were of relatively large diameter. When rats and hamsters were exposed via intraperitoneal injection, tumor incidence was related to fiber length and dose (Smith et al 1987, Pott et al 1987, Miller et al 1999, Pott et al 1989). (From SCOEL publication (EU Scientific Committee on Occupational Exposure Limits) SCOEL/SUM/165, September 2011).

- Reproductive toxicity

Method: Gavage

Species: Rat

Dose: 250mg/kg/day

Routes of administration: Oral

Results: No effects were seen in an OECD 421 screening study. There are no reports of any reproductive toxic effects of mineral fibers. Exposure to these fibers is via inhalation and effects seen are in the lung. Clearance of fibers is via the gut and the feces, so exposure of the reproductive organs is extremely unlikely.

- STOT-Single exposure

Not applicable

- STOT-Repeated exposure

Not applicable

- Aspiration hazard

Not applicable

See the following review publications for a summary and discussion:

Interpretation of these animal experiments is complex and there is not complete agreement amongst scientists internationally. A summary of the evidence relating to RCF carcinogenicity in vivo can be found in SCOEL/SUM/165 and in Utell and Maxim 2010.

Other information

Numerous studies indicate the relevance of biopersistence as a determinant of toxic effects of fiber exposure. (Maxim et al 2006).

Irritant Properties

Negative results have been obtained in animal studies (EU method B 4) for skin irritation. Inhalation exposures using the nose only route produce simultaneous heavy exposures to the eyes, but no reports of excess eye irritation exist. Animals exposed by inhalation similarly show no evidence of respiratory tract irritation.

Human data confirm that only mechanical irritation, resulting in itching, occurs in humans. Screening at manufacturers’ plants in the UK has failed to show any human cases of skin conditions related to fiber exposure.

International Agency for Research on Cancer and National Toxicology Program

IARC, in 1988, Monograph v.43 (and later reaffirmed in 2002, v.81), classified RCF as possibly carcinogenic to humans (group 2B). IARC evaluated the possible health effects of RCF as follows:

- There is inadequate evidence in humans for the carcinogenicity of RCF.
- There is sufficient evidence in experimental animals for the carcinogenicity of RCF.

The Annual Report on Carcinogens (latest edition), prepared by NTP, classified respirable RCF as "reasonably anticipated" to be a carcinogen.

Not classified by OSHA.
12. ECOLOGICAL INFORMATION

12.1 Ecotoxicity
No known aquatic toxicity.

12.2 Persistence and Biodegradability
These products are insoluble materials that remain stable over time and are chemically identical to inorganic compounds found in the soil and sediment; they remain inert in the natural environment.

12.3 Bioaccumulation Potential
No bio accumulative potential.

This product has not been tested, but is not expected to bioaccumulate.

12.4 Mobility in soil
No mobility in soil.

12.5 Results of PBT and vPvB assessment
Not relevant.

12.6 Other adverse effects:
No adverse effects of this material on the environment are anticipated.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

WASTE MANAGEMENT
To prevent waste materials from becoming airborne during waste storage, transportation and disposal, a covered container or plastic bagging is recommended.

DISPOSAL
This product, as manufactured, is not classified as a hazardous waste according to Federal regulations (40 CFR 261). Any processing, use, alteration or chemical additions to the product, as purchased, may alter the disposal requirements. Under Federal regulations, it is the waste generator's responsibility to properly characterize a waste material, to determine if it is a "hazardous" waste. Check local, regional, state or provincial regulations to identify all applicable disposal requirements.
14. TRANSPORTATION INFORMATION

14.1 UN Number
Not applicable

14.2 UN proper shipping name
Not applicable

14.3 Transportation hazard class(es)
Not applicable

14.4 Packing group
Not applicable

14.5 Environmental hazards
Not a marine pollutant

14.6 Special precautions for user
Not applicable

14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code
Not applicable

Canadian TDG Hazard Class & PIN: Not regulated
Not classified as dangerous goods under ADR (road), RID (train) or IMDG (ship).

15. REGULATORY INFORMATION

UNITED STATES REGULATIONS
EPA Superfund Amendments and Reauthorization Act (SARA) Title III - this product does not contain any substances reportable under Sections 302, 304, 313, (40 CFR 372). Sections 311 and 312 (40 CFR 370) apply (delayed hazard).

Hazard Categories: Immediate Hazard – No
Delayed Hazard – Yes
Fire Hazard – No
Pressure Hazard – No
Reactivity Hazard - No

Toxic Substances Control Act (TSCA) - RCF is not required to be listed on the TSCA inventory.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Clean Air Act (CAA) - this product contains fibers with an average diameter greater than one micron and thus is not considered a hazardous air pollutant.

California “Ceramic fibers (airborne particles of respirable size)” is listed in Proposition 65, The Safe Drinking Water and Toxic Enforcement Act of 1986 as a chemical known to the State of California to cause cancer.

Other States RCF products are not known to be regulated by states other than California; however, state and local OSHA and EPA regulations may apply to these products. If in doubt, contact your local regulatory agency.

INTERNATIONAL REGULATIONS
Canada Canadian Environmental Protection Act (CEPA) - All substances in this product are listed, as required, on the Domestic Substance List (DSL)

Europe Integration of RCF into ANNEX XV of the REACH Regulation
RCF is classified under the CLP (classification, labelling and packaging of substances and mixtures) regulation as a category 1B carcinogen. On January 13, 2010 the European Chemicals Agency (ECHA) updated the candidate list for authorization (Annex XV of the REACH regulation) and added 14 new substances in this list including aluminosilicate refractory ceramic fibers.
As a consequence, EU (European Union) or EEA (European Economic Area) suppliers of articles which contain aluminosilicate refractory ceramic fibers in a concentration above 0.1% (w/w) have
to provide sufficient information, available to them, to their customers or upon requests to a consumer within 45 days of the receipt of the request. This information must ensure safe use of the article, and as minimum contains the name of the substance.

16. OTHER INFORMATION

Product Stewardship Program
The manufacturers of refractory ceramic fibers (RCF), who comprise the membership of the HTIW Coalition, remain committed to the continued protection of the health and safety of their employees and all others who use or handle RCF. Building on its prior commitment to voluntary product stewardship, the HTIW Coalition has recently renewed its comprehensive Product Stewardship Program (PSP) for RCF, known as PSP 2017. PSP 2017 is the fourth iteration of the Coalition’s RCF product stewardship program first endorsed by OSHA in 2002 as PSP 2002, renewed in 2007 as PSP-HTW and again in 2012 as PSP 2012. Like its predecessors, PSP 2017 is designed to encourage feasible and necessary control of fiber exposure in the workplace and thereby reduce any potential risk that could be posed by such exposure. For more information regarding this cooperative program that promotes the health and safety of fiber workers nationwide, please visit http://www.htiwcoalition.org

The information contained herein is based on data available to us and is accurate and reliable to the best of our knowledge and belief. However, Specified Technologies, Inc. makes no representations as to its completeness or accuracy. Information is supplied on condition that persons receiving such information will make their own determination as to its suitability for their purposes prior to use.

Prepared by: Specified Technologies, Inc
Preparation Date: February 19, 2019
Version: 1
REVISED: February 19, 2019

Hazardous Materials Identification System (HMIS) Hazard Rating
HMIS Health 1* (* denotes potential for chronic effects)
HMIS Flammability 0
HMIS Reactivity 0
HMIS Personal Protective Equipment X (To be determined by user)

DEFINITIONS
ACGIH: American Conference of Governmental Industrial Hygienists
ADR: Carriage of Dangerous Goods by Road (International Regulation)
CAA: Clean Air Act
CAS: Chemical Abstracts Service
CERCLA: Comprehensive Environmental Response, Compensation and Liability Act
DSL: Domestic Substances List
EPA: Environmental Protection Agency
EU: European Union
f/cc: Fibers per cubic centimeter
HEPA: High Efficiency Particulate Air
HMIS: Hazardous Materials Identification System
IARC: International Agency for Research on Cancer
IATA: International Air Transport Association
IMDG: International Maritime Dangerous Goods Code
mg/m³: Milligrams per cubic meter of air
mmpcf: Million particles per cubic meter
NFPA: National Fire Protection Association
NIOSH: National Institute for Occupational Safety and Health
OSHA: Occupational Safety and Health Administration
29 CFR 1910.134 & 1926.103: OSHA Respiratory Protection Standards
PEL: Permissible Exposure Limit (OSHA)
PIN: Product Identification Number
PNOC: Particulates Not Otherwise Classified
PNOR: Particulates Not Otherwise Regulated
PSP: Product Stewardship Program
RCRA: Resource Conservation and Recovery Act
REL: Recommended Exposure Limit (NIOSH)
RID: Carriage of Dangerous Goods by Rail (International Regulations)
SARA: Superfund Amendments and Reauthorization Act
SARA Title III: Emergency Planning and Community Right to Know Act
SARA Section 302: Extremely Hazardous Substances
SARA Section 304: Emergency Release

E-Wrap Endothermic Wrap SDS

Page 10 of 11
16. OTHER INFORMATION (continued)

SARA Section 311: SDS/List of Chemicals and Hazardous Inventory
SARA Section 312: Emergency and Hazardous Inventory
SARA Section 313: Toxic Chemicals and Release Reporting
STEL: Short Term Exposure Limit
SVF: Synthetic Vitreous Fiber
TDG: Transportation of Dangerous Goods
TLV: Threshold Limit Value (ACGIH)
TSCA: Toxic Substances Control Act
TWA: Time Weighted Average
WHMIS: Workplace Hazardous Materials Information System (Canada)